19 research outputs found

    Visual-Based Shared Control for Remote Telemanipulation with Integral Haptic Feedback

    Get PDF
    International audienceNowadays, one of the largest environmental challenges that European countries must face consists in dealing with the past half century of nuclear waste. In order to optimize maintenance costs, nuclear waste must be sorted, segregated and stored according to its radiation level. Towards this end, in [1] we have recently proposed a visual-based shared control architecture meant to facilitate a human operator in controlling two remote robotic arms (one equipped with a gripper and another with a camera) during remote manipulation tasks of nuclear waste via a master device. The operator could then receive force cues informative of the feasibility of her/his motion commands during the task execution. The strategy presented in [1], albeit effective, suffers however from a locality issue since the operator can only provide instantaneous velocity commands (in a suitable task space), and receive instantaneous force feedback cues. On the other hand, the ability to 'steer' a whole future trajectory in task space, and to receive a corresponding integral force feedback along the whole planned trajectory (because of any constraint of the considered system), could significantly enhance the operator's performance, especially when dealing with complex manipulation tasks. The aim of this work is to then extend [1] towards a planning-based shared control architecture able to take into account the mentioned requirements. A human/hardware-in-the-loop experiment with simulated slave robots and a real master device is reported for demonstrating the feasibility and effectiveness of the proposed approach

    A Visual-Based Shared Control Architecture for Remote Telemanipulation

    Get PDF
    International audience— Cleaning up the past half century of nuclear waste represents the largest environmental remediation project in the whole Europe. Nuclear waste must be sorted, segregated and stored according to its radiation level in order to optimize maintenance costs. The objective of this work is to develop a shared control framework for remote manipulation of objects using visual information. In the presented scenario, the human operator must control a system composed of two robotic arms, one equipped with a gripper and the other one with a camera. In order to facilitate the operator's task, a subset of the gripper motion are assumed to be regulated by an autonomous algorithm exploiting the camera view of the scene. At the same time, the operator has control over the remaining null-space motions w.r.t. the primary (autonomous) task by acting on a force feedback device. A novel force feedback algorithm is also proposed with the aim of informing the user about possible constraints of the robotic system such as, for instance, joint limits. Human/hardware-in-the-loop experiments with simulated slave robots and a real master device are finally reported for demonstrating the feasibility and effectiveness of the approach

    A Haptic Shared-Control Architecture for Guided Multi-Target Robotic Grasping

    Get PDF
    Although robotic telemanipulation has always been a key technology for the nuclear industry, little advancement has been seen over the last decades. Despite complex remote handling requirements, simple mechanically linked master-slave manipulators still dominate the field. Nonetheless, there is a pressing need for more effective robotic solutions able to significantly speed up the decommissioning of legacy radioactive waste. This paper describes a novel haptic shared-control approach for assisting a human operator in the sort and segregation of different objects in a cluttered and unknown environment. A three-dimensional scan of the scene is used to generate a set of potential grasp candidates on the objects at hand. These grasp candidates are then used to generate guiding haptic cues, which assist the operator in approaching and grasping the objects. The haptic feedback is designed to be smooth and continuous as the user switches from a grasp candidate to the next one, or from one object to another one, avoiding any discontinuity or abrupt changes. To validate our approach, we carried out two human-subject studies, enrolling 15 participants. We registered an average improvement of 20.8%, 20.1%, and 32.5% in terms of completion time, linear trajectory, and perceived effectiveness, respectively, between the proposed approach and standard teleoperation

    Contributions to shared control architectures for advanced telemanipulation

    No full text
    Bien que la pleine autonomie dans des environnements inconnus soit encore loin, les architectures de contrôle partagé où l'humain et un contrôleur autonome travaillent ensemble pour atteindre un objectif commun peuvent constituer un « terrain intermédiaire » pragmatique. Dans cette thèse, nous avons abordé les différents problèmes des algorithmes de contrôle partagé pour les applications de saisie et de manipulation. En particulier, le travail s'inscrit dans le projet H2020 Romans dont l'objectif est d'automatiser le tri et la ségrégation des déchets nucléaires en développant des architectures de contrôle partagées permettant à un opérateur humain de manipuler facilement les objets d'intérêt. La thèse propose des architectures de contrôle partagé différentes pour manipulation à double bras avec un équilibre opérateur / autonomie différent en fonction de la tâche à accomplir. Au lieu de travailler uniquement sur le contrôle instantané du manipulateur, nous proposons des architectures qui prennent en compte automatiquement les tâches de pré-saisie et de post-saisie permettant à l'opérateur de se concentrer uniquement sur la tâche à accomplir. La thèse propose également une architecture de contrôle partagée pour contrôler un humanoïde à deux bras où l'utilisateur est informé de la stabilité de l'humanoïde grâce à un retour haptique. En plus, un nouvel algorithme d'équilibrage permettant un contrôle optimal de l'humanoïde lors de l'interaction avec l'environnement est également proposé.While full autonomy in unknown environments is still in far reach, shared-control architectures where the human and an autonomous controller work together to achieve a common objective may be a pragmatic "middle-ground". In this thesis, we have tackled the different issues of shared-control architectures for grasping and sorting applications. In particular, the work is framed in the H2020 RoMaNS project whose goal is to automatize the sort and segregation of nuclear waste by developing shared control architectures allowing a human operator to easily manipulate the objects of interest. The thesis proposes several shared-control architectures for dual-arm manipulation with different operator/autonomy balance depending on the task at hand. While most of the approaches provide an instantaneous interface, we also propose architectures which automatically account for the pre-grasp and post-grasp trajectories allowing the operator to focus only on the task at hand (ex., grasping). The thesis also proposes a shared control architecture for controlling a force-controlled humanoid robot in which the user is informed about the stability of the humanoid through haptic feedback. A new balancing algorithm allowing for the optimal control of the humanoid under high interaction forces is also proposed

    Contributions aux architectures de contrôle partagé pour la télémanipulation avancée

    No full text
    While full autonomy in unknown environments is still in far reach, shared-control architectures where the human and an autonomous controller work together to achieve a common objective may be a pragmatic "middle-ground". In this thesis, we have tackled the different issues of shared-control architectures for grasping and sorting applications. In particular, the work is framed in the H2020 RoMaNS project whose goal is to automatize the sort and segregation of nuclear waste by developing shared control architectures allowing a human operator to easily manipulate the objects of interest. The thesis proposes several shared-control architectures for dual-arm manipulation with different operator/autonomy balance depending on the task at hand. While most of the approaches provide an instantaneous interface, we also propose architectures which automatically account for the pre-grasp and post-grasp trajectories allowing the operator to focus only on the task at hand (ex., grasping). The thesis also proposes a shared control architecture for controlling a force-controlled humanoid robot in which the user is informed about the stability of the humanoid through haptic feedback. A new balancing algorithm allowing for the optimal control of the humanoid under high interaction forces is also proposed.Bien que la pleine autonomie dans des environnements inconnus soit encore loin, les architectures de contrôle partagé où l'humain et un contrôleur autonome travaillent ensemble pour atteindre un objectif commun peuvent constituer un « terrain intermédiaire » pragmatique. Dans cette thèse, nous avons abordé les différents problèmes des algorithmes de contrôle partagé pour les applications de saisie et de manipulation. En particulier, le travail s'inscrit dans le projet H2020 Romans dont l'objectif est d'automatiser le tri et la ségrégation des déchets nucléaires en développant des architectures de contrôle partagées permettant à un opérateur humain de manipuler facilement les objets d'intérêt. La thèse propose des architectures de contrôle partagé différentes pour manipulation à double bras avec un équilibre opérateur / autonomie différent en fonction de la tâche à accomplir. Au lieu de travailler uniquement sur le contrôle instantané du manipulateur, nous proposons des architectures qui prennent en compte automatiquement les tâches de pré-saisie et de post-saisie permettant à l'opérateur de se concentrer uniquement sur la tâche à accomplir. La thèse propose également une architecture de contrôle partagée pour contrôler un humanoïde à deux bras où l'utilisateur est informé de la stabilité de l'humanoïde grâce à un retour haptique. En plus, un nouvel algorithme d'équilibrage permettant un contrôle optimal de l'humanoïde lors de l'interaction avec l'environnement est également proposé

    User evaluation of a haptic-enabled shared-control approach for robotic telemanipulation

    Get PDF
    International audienceRobotic telemanipulators are already widely used in nuclear decommissioning sites for handling radioactive waste. However, currently employed systems are still extremely primitive , making the handling of these materials prohibitively slow and ineffective. As the estimated cost for the decommissioning and clean-up of nuclear sites keeps rising, it is clear that one would need faster and more effective approaches. Towards this goal, in this paper we present the user evaluation of a recently proposed haptic-enabled shared-control architecture for telemanipulation. An autonomous algorithm regulates a subset of the slave manipulator degrees of freedom (DoF) in order to help the human operator in grasping an object of interest. The human operator can then steer the manipulator along the remaining null-space directions with respect to the main task by acting on a grounded haptic interface. The haptic cues provided to the operator are designed in order to inform about the feasibility of the user's commands with respect to possible constraints of the robotic system. In this paper we compared this shared-control architecture against a classical 6-DOF teleoperation approach in a real scenario by running experiments with 10 subjects. The results clearly show that the proposed shared-control approach is a viable and effective solution for improving currently-available teleoperation systems in remote telemanipulation tasks

    Visual-Based Shared Control for Remote Telemanipulation with Integral Haptic Feedback

    Get PDF
    International audienceNowadays, one of the largest environmental challenges that European countries must face consists in dealing with the past half century of nuclear waste. In order to optimize maintenance costs, nuclear waste must be sorted, segregated and stored according to its radiation level. Towards this end, in [1] we have recently proposed a visual-based shared control architecture meant to facilitate a human operator in controlling two remote robotic arms (one equipped with a gripper and another with a camera) during remote manipulation tasks of nuclear waste via a master device. The operator could then receive force cues informative of the feasibility of her/his motion commands during the task execution. The strategy presented in [1], albeit effective, suffers however from a locality issue since the operator can only provide instantaneous velocity commands (in a suitable task space), and receive instantaneous force feedback cues. On the other hand, the ability to 'steer' a whole future trajectory in task space, and to receive a corresponding integral force feedback along the whole planned trajectory (because of any constraint of the considered system), could significantly enhance the operator's performance, especially when dealing with complex manipulation tasks. The aim of this work is to then extend [1] towards a planning-based shared control architecture able to take into account the mentioned requirements. A human/hardware-in-the-loop experiment with simulated slave robots and a real master device is reported for demonstrating the feasibility and effectiveness of the proposed approach
    corecore